LECTURE V Bi-presymplectic separability of Stäckel systems

Maciej Błaszak

Poznań University, Poland

Maciej Błaszak (Poznań University, Poland) and [LECTURE V](#page-18-0) 1 1 / 19

4 0 8

How to relate Hamiltonian vector fields and inverse-Hamiltonian vector fields in degenerated cas? $(X_H = \Pi dH, \ \Omega X^H = dH)$

Definition

Dual Poisson-presymplectic pair of corank m on M we call a pair (Π, Ω) such that

\n- Q ker
$$
\Pi = Sp\{dc_i, i = 1, ..., m\}
$$
\n- Q ker $\Omega = Sp\{Z_i, i = 1, ..., m\}$
\n- $Z_i(c_j) = \delta_{ij}, i, j = 1, ..., m$
\n- The following partition of unity holds on TM , respectively T^*M :
\n

$$
I=\Pi\Omega+\sum_{i=1}^m Z_i\otimes dc_i, \qquad I=\Omega\Pi+\sum_{i=1}^m dc_i\otimes Z_i.
$$

Observation. On any symplectic leave S of Π : $\left(\Pi_{|S}\right)^{-1} = \Omega_{|S}.$

Let (Π, Ω) be a dual pair and $X_F = \Pi dF$, $\Omega X^F = dF$, then

$$
dF = \Omega X_F + \sum_{i=1}^m Z_i(F)dc_i, \quad X_F = X^F - \sum_{i=1}^m X^F(c_i)Z_i.
$$

• Observe that for Poisson algebra given by a dual pair (Π, Ω) , although $\mathcal{X}_\mathsf{F} \neq \mathsf{X}^\mathsf{F}$, but

$$
\{F, G\}^{\Omega} := \Omega(X_F, X_G) = \langle \Omega X_F, X_G \rangle = \langle \Omega X^F, X_G \rangle = \langle dF, \Pi dG \rangle
$$

= $\{F, G\}_{\Pi}.$

• For any dual pair (Π, Ω) :

$$
L_{X_F} \Pi = 0, \quad L_{X_F} \Omega = 0, \quad L_{Z_i} \Pi = 0, \quad L_{Z_i} \Omega = 0, \quad [Z_i, Z_j] = 0.
$$

• Non-uniqueness of dual pairs.

Theorem

Let (Π, Ω) be a dual pair with ker $\Pi = Sp{dc_i}$ and ker $\Omega = Sp{Z_i}$. Let

$$
\Omega'=\Omega+\sum_{i=1}^m dc_i\wedge df_i,
$$

then (Π, Ω') is again dual pair, with ker $\Omega' = \mathsf{Sp}\{Z_i + \Pi \mathsf{df}_i\}$, provided that

$$
\Pi(df_i, df_j) + Z_j(f_i) - Z_i(f_j) = 0.
$$

Let

$$
\Pi' = \Pi + \sum_{i=1}^m Z_i \wedge X_i, \quad \Omega X_i = dF_i,
$$

then (Π', Ω) is again dual pair, with ker $\Pi' = \mathsf{Sp}\{\mathsf{dc}_i + \mathsf{d}F_i\}$, provided that

$$
\Omega(X_i,X_j)+X_j(c_i)-X_i(c_j)=0.
$$

Examples.

• 2*n*-dimensional phase space $M = \mathbb{R}^{2n}$ with nondegenerated canonical dual pair:

$$
\pi = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial p_i}, \qquad \omega = \sum_{i=1}^{n} dp_i \wedge dx_i, \quad \pi \omega = \omega \pi = 1,
$$

$$
\pi = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \qquad \omega = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.
$$

• Extend $M \to \mathcal{M} = M \times \mathbb{R}^m$ with extra coordinates $(c_1, ..., c_m)$. Then, on M

$$
\Pi = \begin{bmatrix} 0 & I & 0 \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad \Omega = \begin{bmatrix} 0 & -I & 0 \\ I & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},
$$
\n
$$
\ker \Pi = Sp\{dc_i\}, \quad \ker \Omega = Sp\left\{\frac{\partial}{\partial c_i}\right\}, \quad \frac{\partial}{\partial c_i}(c_j) = \delta_{ij},
$$

 \bullet

$$
I=\Pi\Omega+\sum_{i=1}^m\frac{\partial}{\partial c_i}\otimes dc_i.
$$

• Gauge freedom for $m = 1$.

For any Hamiltonian vector field $X_F = \Pi dF$, such that $\frac{\partial F}{\partial c} = 0$,

$$
\Pi' = \Pi + \frac{\partial}{\partial c} \wedge X_F, \quad \ker \Pi' = d(c + F)
$$

is dual to Ω .

 \bullet For any function f

$$
\Omega' = \Omega + dc \wedge dF, \qquad \ker \Omega' = \frac{\partial}{\partial c} + \Pi df
$$

is dual to Π.

Definition

A Poisson tensor Π_1 is d-compatible with a Poisson tensor Π_0 if there exists a presymplectic form Ω_0 , dual to Π_0 , such that $\Omega_0\Pi_1\Omega_0$ is closed. Then, we say that the pair (Π_0, Π_1) is d-compatible with respect to Ω_0 .

Definition

A closed two-form Ω_1 is d-compatible with a closed two-form Ω_0 if there exists a Poisson tensor Π_0 , dual to Ω_0 , such that $\Pi_0\Omega_1\Pi_0$ is Poisson. Then, we say that the pair (Ω_0, Ω_1) is d-compatible with respect to Π_0 .

• For Π_0 nondegenerated:

 d -compatibility \iff ordinary compatibility

 \bullet ωN -manifold case: (π_0, π_1) are *d*-compatible with respect to $\omega_0 = \pi_0^{-1}$ and (ω_0, ω_1) , where $\omega_1 = \omega_0 \pi_1 \omega_0$, are *d*-compatible with respect to π_0 . K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ≯

 \bullet For Π_0 degenerated:

 d -compatibility \implies ordinary compatibility

• For implication \Leftarrow an additional assumption is required, i.e. the existence of some Ω_0 , dual to Π_0 , such that

$$
\Omega_0(L_{Z_i}\Pi_1)\Omega_0=0, \qquad i=1,...,r.
$$

• From above condition follows that

$$
L_{Z_i}\Pi_1=\sum_{j=1}^m W_{ij}\wedge Z_j
$$

and hence, according to the results of Lecture III, if a pair (Π_0, Π_1) is d-compatible with respect to Ω_0 , then Π_1 is projectible onto the foliation of Π_0 Π_0 along the distribution $\mathcal{Z} = \ker \Omega_0$ $\mathcal{Z} = \ker \Omega_0$ $\mathcal{Z} = \ker \Omega_0$.

Theorem

Assume that there exists a pair of presymplectic forms (Ω_0, Ω_1) d-compatible with respect to some Π_0 dual to Ω_0 , both of rank 2n and co-rank m on M. Assume further, that they form bi-inverse-Hamiltonian chains of closed one-forms

$$
dH_i^{(k)} = \Omega_0 Y_{i+1}^{(k)} = \Omega_1 Y_i^{(k)}, \qquad i = 1, ..., n_k,
$$
 (5.1)

where $k = 1, ..., r, n_1 + ... + n_m = n$ and each chain starts with a kernel vector field $Y^{(k)}_0$ of Ω_0 and terminates with a kernel vector field $Y^{(k)}_{n_k}$ of Ω_1 . Then

$$
\Omega_0(Y_i^{(k)}, Y_j^{(s)}) = \Omega_1(Y_i^{(k)}, Y_j^{(s)}) = 0.
$$

Bi-inverse-Hamiltonian chains

• Moreover, let

$$
X_i^{(k)} = \Pi_0 dH_i^{(k)}
$$

which implies that

$$
X_i^{(k)} = Y_i^{(k)} - \sum_{j=1}^r Y_i^{(k)}(H_0^{(j)}) Y_0^{(j)},
$$

where $\Pi_0 dH_0^{(j)}=0$. Then,

$\Pi_0(dH_i^{(k)}, dH_j^{(s)}) = 0, \qquad [X_i^{(k)}]$ $\boldsymbol{\gamma}_i^{(k)}, \boldsymbol{\chi}_j^{(s)}$ $\left[\begin{matrix} \n s \\
j \n \end{matrix} \right] = 0,$

so the chain defines a Liouville integrable system.

 \bullet

Bi-inverse-Hamiltonian chains

Any bi-inverse-Hamiltonian system [\(5.1\)](#page-8-1) has quasi-bi-Hamiltonian representation on any leave of Π_0 :

$$
\Pi_0 dH_{i+1}^{(k)} = \Pi_0 \Omega_1 Y_i^{(k)} = \Pi_0 \Omega_1 \left(X_i^{(k)} + \sum_{j=1}^m Y_i^{(k)} (H_0^{(j)}) Y_0^{(j)} \right)
$$

\n
$$
= \Pi_0 \left(\Omega_1 X_i^{(k)} + \sum_{j=1}^m Y_i^{(k)} (H_0^{(j)}) dH_1^{(j)} \right)
$$

\n
$$
= \Pi_0 \Omega_1 \Pi_0 dH_i^{(k)} + \sum_{j=1}^m Y_i^{(k)} (H_0^{(j)}) \Pi_0 dH_1^{(j)}
$$

\n
$$
\updownarrow
$$

\n
$$
\Pi_D dH_i^{(k)} = \Pi_0 dH_{i+1}^{(k)} - \sum_{j=1}^m \alpha_{ij}^{(k)} \Pi_0 dH_1^{(j)}
$$
(5.2)
\nwhere $\Pi_D = \Pi_0 \Omega_1 \Pi_0$ and $\alpha_{ij}^{(k)} = Y_i^{(k)} (H_0^{(j)})$.

- Π_D is Poissson as (Ω_0, Ω_1) are compatible.
- Moreover Π_D and Π_0 share the same Casimirs $\{ H_0^{(k)}$ $\binom{1}{0}$, so (5.2) can be restricted to any leave S of Π_0 of dimension 2n:

$$
\pi_1 dh_i^{(k)} = \pi_0 dh_{i+1}^{(k)} - \sum_{j=1}^m \alpha_{ij}^{(k)} \pi_0 dh_1^{(j)},
$$

where $\pi_0 = \Pi_{0|\mathcal{S}}$, $\pi_1 = \Pi_{D|\mathcal{S}}$, $h_i^{(k)} = H_{i|\mathcal{S}}^{(k)}$ $\int_{i|S}^{N}$, and we again landing in bi-Lagrangian distribution of *ω*N-manifold, considered in Lecture III.

 \bullet Separation relations on phase space M

$$
\sum_{k=1}^m \varphi_i^k(\lambda_i, \mu_i) \left[\lambda_i^{r_k} + h^{(k)}(\lambda_i, n_k) \right] = \chi_i(\lambda_i, \mu_i), \qquad i = 1, ..., n
$$

$$
\bullet
$$

⇓ quasi-bi-Hamiltonian chains

$$
\pi_1 dh_i^{(k)} = \pi_0 \left(dh_{i+1}^{(k)} - \sum_{j=1}^m \alpha_{ij}^{(k)} dh_1^{(j)} \right), \qquad \alpha_{ij}^{(k)} = V_i^{(k,j,n_j)}, \quad (5.3)
$$

where

$$
\pi_0=\sum_{i=1}^n\frac{\partial}{\partial\lambda_i}\wedge \frac{\partial}{\partial\mu_i},\quad \pi_1=\sum_{i=1}^n\lambda_i\frac{\partial}{\partial\lambda_i}\wedge \frac{\partial}{\partial\mu_i}.
$$

 \leftarrow

• Consider following symplectic forms on M

$$
\omega_0=\sum_{i=1}^n d\mu_i\wedge d\lambda_i, \quad \omega_1=\sum_{i=1}^n \lambda_i d\mu_i\wedge d\lambda_i.
$$

- **Observe that** (π_0, ω_0) is a dual pair, $(\pi_0, \pi_1 = \pi_0 \omega_1 \pi_0)$ are d-compatible with respect to ω_0 and (ω_0, ω_1) are d-compatible with respect to π_0 .
- Quasi-bi-Hamiltonian chains [\(5.3\)](#page-12-0) have equivalent quasi-bi-inverse -Hamiltonian representation. Actually, multiplying (5.3) by ω_0 we get

$$
\omega_1 x_i^{(k)} = \omega_0 \left(x_{i+1}^{(k)} - \sum_{j=1}^m \alpha_{ij}^{(k)} x_1^{(j)} \right),
$$

where $x_i^{(k)} = \pi_0 dh_i^{(k)}$, $\omega_0 x_i^{(k)} = dh_i^{(k)}$.

- Lift: $M \to M$, $(\lambda, \mu) \to (\lambda, \mu, c)$, dim $M = 2n + m$, $\omega_0 \to \Omega_0$, $\pi_0 \rightarrow \Pi_0$, ker $\Omega_0 =$ Sp $\{\mathsf{Y}^{(k)}_0\}$ $\binom{1}{0}$, ker $\Pi_0 = Sp\{dc_k\}$, (Ω_0, Π_0) dual pair.
- Similarly: $\omega_1 \to \Omega_D$, $\pi_1 \to \Pi_D$, $x_i^{(k)} \to X_i^{(k)}$ $i^{(k)}$, where ker $\Omega_D = \ker \Omega_0$, ker $\Pi_D = \ker \Pi_0$.
- Quasi-bi-inverse-Hamiltonian representation on $\mathcal M$:

$$
\Omega_D X_i^{(k)} = \Omega_0 \left(X_{i+1}^{(k)} - \sum_{j=1}^m \alpha_{ij}^{(k)} X_1^{(j)} \right).
$$

• Define a presymplectic two-form

$$
\Omega_1=\Omega_D+\sum_{k=1}^mdh_1^{(k)}\wedge dc_k
$$

• and the set of vector-fields

$$
Y_i^{(k)} = X_i^{(k)} + \sum_{j=1}^m \alpha_{ij}^{(k)} Y_0^{(j)}.
$$

Theorem

On M differentials dh $_i^{(k)}$ form a bi-inverse-Hamiltonian chains

$$
\Omega_0 Y_0^{(k)} = 0
$$

\n
$$
\Omega_0 Y_1^{(k)} = dh_1^{(k)} = \Omega_1 Y_0^{(k)}
$$

\n:
\n
$$
\Omega_0 Y_{n_k}^{(k)} = dh_{n_k}^{(k)} = \Omega_1 Y_{n_{k-1}}^{(k)}
$$

\n
$$
0 = \Omega_1 Y_{n_k}^{(k)}, \qquad k = 1, ..., m,
$$

where (Ω_0, Ω_1) are d-c[o](#page-14-0)mpatible with respect to Π_0 [.](#page-14-0)
 Ω _{ciei} Błaszak (Poznań University Poland) (ECTURE V

- Let us compare the construction of bi-inverse-Hamiltonian repesentation with the construction of bi-Hamiltonian representation presented in Lecture IV.
- Extend the oryginal Hamiltonians

$$
h_i^{(k)} \to H_i^{(k)} = h_i^{(k)} + \sum_{j=1}^m V_i^{(k,j,n_j)} c_j.
$$

Then on \mathcal{M} , vector fields $\mathcal{K}^{(k)}_i = \Pi_0 d\mathcal{H}^{(k)}_i$ form a bi-Hamiltonian chains

$$
\Pi_0 dH_0^{(k)} = 0
$$
\n
$$
\Pi_0 dH_1^{(k)} = X_1^{(k)} = \Pi_1 dH_0^{(k)}
$$
\n
$$
\vdots
$$
\n
$$
\Pi_0 dH_{n_k}^{(k)} = X_{n_k}^{(k)} = \Pi_1 dH_{n_{k-1}}^{(k)}
$$
\n
$$
0 = \Pi_1 dH_{n_k}^{(k)}
$$
\n
$$
\vdots
$$
\n
$$
0 = \Pi_1 dH_{n_k}^{(k)}
$$
\n
$$
\vdots
$$
\n
$$
\vdots
$$

o where

$$
\Pi_1=\Pi_D+\sum_{j=1}^m K_1^{(j)}\wedge Y_0^{(j)}
$$

and (Π_0, Π_1) are d-compatible with respect to Ω_0 .

• Example. Henon-Heiles

 \bullet

$$
h_1 = \frac{1}{2}p_1^2 + \frac{1}{2}p_2^2 + q_1^3 + \frac{1}{2}q_1q_2^2,
$$

$$
h_2 = \frac{1}{2}q_2p_1p_2 - \frac{1}{2}q_1p_2^2 + \frac{1}{4}q_1^2q_2^2 + \frac{1}{16}q_2^2.
$$

 \bullet On $\mathbb{R}^5 \ni (q_1, q_2, p_1, p_2, c)$

$$
\Omega_0 Y_0 = 0
$$

\n
$$
\Omega_0 Y_1 = dh_1 = \Omega_1 Y_0
$$

\n
$$
\Omega_0 Y_2 = dh_2 = \Omega_1 Y_1
$$

\n
$$
0 = \Omega_1 Y_{2_{\Delta_1 + \Delta_2} \cup \{0\}} \cup \{0\}
$$

where
$$
Y_1 = \Pi_0 dh_1 - q_1 Y_0
$$
, $Y_2 = \Pi_0 dh_2 - \frac{1}{4} q_2^2 Y_0$ and

$$
\Omega_0 = \begin{bmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},
$$

$$
\Omega_1 = \begin{bmatrix} 0 & -\frac{1}{2}p_2 & -q_1 & -\frac{1}{2}q_2 & 3q_1^2 + \frac{1}{2}q_2^2 \\ \frac{1}{2}p_2 & 0 & -\frac{1}{2}q_2 & 0 & q_1q_2 \\ q_1 & \frac{1}{2}q_2 & 0 & 0 & p_1 \\ \frac{1}{2}q_2 & 0 & 0 & 0 & p_2 \\ -3q_1^2 - \frac{1}{2}q_2^2 & -q_1q_2 & -p_1 & -p_2 & 0 \end{bmatrix}.
$$

4 0 8

-4 B