LECTURE V

Bi-presymplectic separability of Stäckel systems

Maciej Błaszak

Poznań University, Poland

• How to relate Hamiltonian vector fields and inverse-Hamiltonian vector fields in degenerated cas? $(X_H = \Pi dH, \ \Omega X^H = dH)$

Definition

Dual Poisson-presymplectic pair of corank m on M we call a pair (Π,Ω) such that

- **1** ker $\Pi = Sp\{dc_i, i = 1, ..., m\}$
- **2** $\ker \Omega = Sp\{Z_i, i = 1, ..., m\}$
- **3** $Z_i(c_j) = \delta_{ij}, \quad i, j = 1, ..., m$
- The following partition of unity holds on TM, respectively T^*M :

$$I = \Pi\Omega + \sum_{i=1}^{m} Z_i \otimes dc_i, \qquad I = \Omega\Pi + \sum_{i=1}^{m} dc_i \otimes Z_i.$$

ullet Observation. On any symplectic leave S of Π : $\left(\Pi_{|S}\right)^{-1}=\Omega_{|S}$.

• Let (Π, Ω) be a dual pair and $X_F = \Pi dF$, $\Omega X^F = dF$, then

$$dF = \Omega X_F + \sum_{i=1}^m Z_i(F) dc_i, \quad X_F = X^F - \sum_{i=1}^m X^F(c_i) Z_i.$$

• Observe that for Poisson algebra given by a dual pair (Π,Ω) , although $X_F \neq X^F$, but

$$\{F, G\}^{\Omega} := \Omega(X_F, X_G) = \langle \Omega X_F, X_G \rangle = \langle \Omega X^F, X_G \rangle = \langle dF, \Pi dG \rangle$$

= $\{F, G\}_{\Pi}$.

• For any dual pair (Π, Ω) :

$$L_{X_F}\Pi=0$$
, $L_{X^F}\Omega=0$, $L_{Z_i}\Pi=0$, $L_{Z_i}\Omega=0$, $[Z_i,Z_j]=0$.

Non-uniqueness of dual pairs.

Theorem

Let (Π, Ω) be a dual pair with $\ker \Pi = Sp\{dc_i\}$ and $\ker \Omega = Sp\{Z_i\}$. Let

$$\Omega' = \Omega + \sum_{i=1}^m dc_i \wedge df_i,$$

then (Π, Ω') is again dual pair, with $\ker \Omega' = Sp\{Z_i + \Pi df_i\}$, provided that

$$\Pi(df_i, df_j) + Z_j(f_i) - Z_i(f_j) = 0.$$

Let

$$\Pi' = \Pi + \sum_{i=1}^{m} Z_i \wedge X_i, \quad \Omega X_i = dF_i,$$

then (Π',Ω) is again dual pair, with $\ker \Pi' = Sp\{dc_i + dF_i\}$, provided that

$$\Omega(X_i, X_i) + X_i(c_i) - X_i(c_i) = 0.$$

- Examples.
- 2*n*-dimensional phase space $M = \mathbb{R}^{2n}$ with nondegenerated canonical dual pair:

$$\pi = \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \wedge \frac{\partial}{\partial p_{i}}, \quad \omega = \sum_{i=1}^{n} dp_{i} \wedge dx_{i}, \quad \pi\omega = \omega\pi = I,$$

$$\pi = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}, \quad \omega = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}.$$

• Extend $M \to \mathcal{M} = M \times \mathbb{R}^m$ with extra coordinates $(c_1, ..., c_m)$. Then, on \mathcal{M}

$$\Pi = \left[\begin{array}{ccc} 0 & I & 0 \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \quad \Omega = \left[\begin{array}{ccc} 0 & -I & 0 \\ I & 0 & 0 \\ 0 & 0 & 0 \end{array} \right],$$

$$\ker \Pi = Sp\{dc_i\}, \quad \ker \Omega = Sp\left\{\frac{\partial}{\partial c_i}\right\}, \quad \frac{\partial}{\partial c_i}(c_j) = \delta_{ij},$$

•

$$I = \Pi\Omega + \sum_{i=1}^{m} \frac{\partial}{\partial c_i} \otimes dc_i.$$

- Gauge freedom for m = 1.
- For any Hamiltonian vector field $X_F = \Pi dF$, such that $\frac{\partial F}{\partial c} = 0$,

$$\Pi' = \Pi + \frac{\partial}{\partial c} \wedge X_F, \quad \ker \Pi' = d(c+F)$$

is dual to Ω .

• For any function f

$$\Omega' = \Omega + dc \wedge dF$$
, $\ker \Omega' = \frac{\partial}{\partial c} + \Pi df$

is dual to Π .

D-compatibility

Definition

A Poisson tensor Π_1 is d-compatible with a Poisson tensor Π_0 if there exists a presymplectic form Ω_0 , dual to Π_0 , such that $\Omega_0\Pi_1\Omega_0$ is closed. Then, we say that the pair (Π_0,Π_1) is d-compatible with respect to Ω_0 .

Definition

A closed two-form Ω_1 is d-compatible with a closed two-form Ω_0 if there exists a Poisson tensor Π_0 , dual to Ω_0 , such that $\Pi_0\Omega_1\Pi_0$ is Poisson. Then, we say that the pair (Ω_0,Ω_1) is d-compatible with respect to Π_0 .

• For Π_0 nondegenerated:

d-compatibility \iff ordinary compatibility

• ω N-manifold case: (π_0, π_1) are d-compatible with respect to $\omega_0 = \pi_0^{-1}$ and (ω_0, ω_1) , where $\omega_1 = \omega_0 \pi_1 \omega_0$, are d-compatible with respect to π_0 .

D-compatibility

• For Π_0 degenerated:

d-compatibility \implies ordinary compatibility

• For implication \longleftarrow an additional assumption is required, i.e. the existence of some Ω_0 , dual to Π_0 , such that

$$\Omega_0(L_{Z_i}\Pi_1)\Omega_0=0, \qquad i=1,...,r.$$

From above condition follows that

$$L_{Z_i}\Pi_1=\sum_{j=1}^m W_{ij}\wedge Z_j$$

and hence, according to the results of Lecture III, if a pair (Π_0, Π_1) is d-compatible with respect to Ω_0 , then Π_1 is projectible onto the foliation of Π_0 along the distribution $\mathcal{Z} = \ker \Omega_0$.

Theorem

Assume that there exists a pair of presymplectic forms (Ω_0, Ω_1) d-compatible with respect to some Π_0 dual to Ω_0 , both of rank 2n and co-rank m on M. Assume further, that they form bi-inverse-Hamiltonian chains of closed one-forms

$$dH_i^{(k)} = \Omega_0 Y_{i+1}^{(k)} = \Omega_1 Y_i^{(k)}, \qquad i = 1, ..., n_k,$$
 (5.1)

where $k=1,...,r,\ n_1+...+n_m=n$ and each chain starts with a kernel vector field $Y_0^{(k)}$ of Ω_0 and terminates with a kernel vector field $Y_{n_k}^{(k)}$ of Ω_1 . Then

$$\Omega_0(Y_i^{(k)}, Y_j^{(s)}) = \Omega_1(Y_i^{(k)}, Y_j^{(s)}) = 0.$$

• Moreover, let

$$X_i^{(k)} = \Pi_0 dH_i^{(k)}$$

which implies that

$$X_i^{(k)} = Y_i^{(k)} - \sum_{j=1}^r Y_i^{(k)} (H_0^{(j)}) Y_0^{(j)},$$

where $\Pi_0 dH_0^{(j)} = 0$. Then,

$$\Pi_0(dH_i^{(k)}, dH_j^{(s)}) = 0, \qquad [X_i^{(k)}, X_j^{(s)}] = 0,$$

so the chain defines a Liouville integrable system.

Any bi-inverse-Hamiltonian system (5.1) has quasi-bi-Hamiltonian representation on any leave of Π_0 :

$$\Pi_{0}dH_{i+1}^{(k)} = \Pi_{0}\Omega_{1}Y_{i}^{(k)} = \Pi_{0}\Omega_{1}\left(X_{i}^{(k)} + \sum_{j=1}^{m}Y_{i}^{(k)}(H_{0}^{(j)})Y_{0}^{(j)}\right)
= \Pi_{0}\left(\Omega_{1}X_{i}^{(k)} + \sum_{j=1}^{m}Y_{i}^{(k)}(H_{0}^{(j)})dH_{1}^{(j)}\right)
= \Pi_{0}\Omega_{1}\Pi_{0}dH_{i}^{(k)} + \sum_{j=1}^{m}Y_{i}^{(k)}(H_{0}^{(j)})\Pi_{0}dH_{1}^{(j)}
\updownarrow
\Pi_{D}dH_{i}^{(k)} = \Pi_{0}dH_{i+1}^{(k)} - \sum_{j=1}^{m}\alpha_{ij}^{(k)}\Pi_{0}dH_{1}^{(j)}$$
(5.2)

Maciej Błaszak (Poznań University, Poland)

where $\Pi_D=\Pi_0\Omega_1\Pi_0$ and $~\alpha_{ij}^{(k)}=Y_i^{(k)}(H_0^{(j)}).$

- Π_D is Poissson as (Ω_0, Ω_1) are compatible.
- Moreover Π_D and Π_0 share the same Casimirs $\{H_0^{(k)}\}$, so (5.2) can be restricted to any leave S of Π_0 of dimension 2n:

$$\pi_1 dh_i^{(k)} = \pi_0 dh_{i+1}^{(k)} - \sum_{j=1}^m \alpha_{ij}^{(k)} \pi_0 dh_1^{(j)},$$

where $\pi_0=\Pi_{0|S}$, $\pi_1=\Pi_{D|S}$, $h_i^{(k)}=H_{i|S}^{(k)}$, and we again landing in bi-Lagrangian distribution of ωN -manifold, considered in Lecture III.

Separation relations on phase space M

$$\sum_{k=1}^{m} \varphi_i^k(\lambda_i, \mu_i) \left[\lambda_i^{r_k} + h^{(k)}(\lambda_i, n_k) \right] = \chi_i(\lambda_i, \mu_i), \qquad i = 1, ..., n$$

↓ quasi-bi-Hamiltonian chains

$$\pi_1 dh_i^{(k)} = \pi_0 \left(dh_{i+1}^{(k)} - \sum_{j=1}^m \alpha_{ij}^{(k)} dh_1^{(j)} \right), \qquad \alpha_{ij}^{(k)} = V_i^{(k,j,n_j)}, \quad (5.3)$$

where

$$\pi_0 = \sum_{i=1}^n \frac{\partial}{\partial \lambda_i} \wedge \frac{\partial}{\partial \mu_i}, \quad \pi_1 = \sum_{i=1}^n \lambda_i \frac{\partial}{\partial \lambda_i} \wedge \frac{\partial}{\partial \mu_i}.$$

• Consider following symplectic forms on M

$$\omega_0 = \sum_{i=1}^n d\mu_i \wedge d\lambda_i, \quad \omega_1 = \sum_{i=1}^n \lambda_i d\mu_i \wedge d\lambda_i.$$

- Observe that (π_0, ω_0) is a dual pair, $(\pi_0, \pi_1 = \pi_0 \omega_1 \pi_0)$ are d-compatible with respect to ω_0 and (ω_0, ω_1) are d-compatible with respect to π_0 .
- Quasi-bi-Hamiltonian chains (5.3) have equivalent quasi-bi-inverse -Hamiltonian representation. Actually, multiplying (5.3) by ω_0 we get

$$\omega_1 x_i^{(k)} = \omega_0 \left(x_{i+1}^{(k)} - \sum_{j=1}^m \alpha_{ij}^{(k)} x_1^{(j)} \right),$$

where $x_i^{(k)} = \pi_0 dh_i^{(k)}$, $\omega_0 x_i^{(k)} = dh_i^{(k)}$.

- Lift: $M \to \mathcal{M}$, $(\lambda, \mu) \to (\lambda, \mu, c)$, $\dim \mathcal{M} = 2n + m$, $\omega_0 \to \Omega_0$, $\pi_0 \to \Pi_0$, $\ker \Omega_0 = Sp\{Y_0^{(k)}\}$, $\ker \Pi_0 = Sp\{dc_k\}$, (Ω_0, Π_0) dual pair.
- Similarly: $\omega_1 \to \Omega_D$, $\pi_1 \to \Pi_D$, $x_i^{(k)} \to X_i^{(k)}$, where $\ker \Omega_D = \ker \Omega_0$, $\ker \Pi_D = \ker \Pi_0$.
- ullet Quasi-bi-inverse-Hamiltonian representation on ${\mathcal M}$:

$$\Omega_D X_i^{(k)} = \Omega_0 \left(X_{i+1}^{(k)} - \sum_{j=1}^m \alpha_{ij}^{(k)} X_1^{(j)} \right).$$

• Define a presymplectic two-form

$$\Omega_1 = \Omega_D + \sum_{k=1}^m dh_1^{(k)} \wedge dc_k$$

and the set of vector-fields

$$Y_i^{(k)} = X_i^{(k)} + \sum_{j=1}^m \alpha_{ij}^{(k)} Y_0^{(j)}.$$

Theorem

On $\mathcal M$ differentials $\mathsf{dh}_i^{(k)}$ form a bi-inverse-Hamiltonian chains

$$\begin{split} \Omega_0 Y_0^{(k)} &= 0 \\ \Omega_0 Y_1^{(k)} &= dh_1^{(k)} = \Omega_1 Y_0^{(k)} \\ &\vdots \\ \Omega_0 Y_{n_k}^{(k)} &= dh_{n_k}^{(k)} = \Omega_1 Y_{n_{k-1}}^{(k)} \\ 0 &= \Omega_1 Y_{n_k}^{(k)}, \qquad k = 1, ..., m, \end{split}$$

where (Ω_0, Ω_1) are d-compatible with respect to Π_0 .

- Let us compare the construction of bi-inverse-Hamiltonian repesentation with the construction of bi-Hamiltonian representation presented in Lecture IV.
- Extend the oryginal Hamiltonians

$$h_i^{(k)} o H_i^{(k)} = h_i^{(k)} + \sum_{j=1}^m V_i^{(k,j,n_j)} c_j.$$

• Then on \mathcal{M} , vector fields $K_i^{(k)} = \Pi_0 dH_i^{(k)}$ form a bi-Hamiltonian chains

$$\begin{split} \Pi_0 dH_0^{(k)} &= 0 \\ \Pi_0 dH_1^{(k)} &= X_1^{(k)} = \Pi_1 dH_0^{(k)} \\ &\vdots \\ \Pi_0 dH_{n_k}^{(k)} &= X_{n_k}^{(k)} = \Pi_1 dH_{n_{k-1}}^{(k)} \end{split}$$

where

$$\Pi_1 = \Pi_D + \sum_{j=1}^m K_1^{(j)} \wedge Y_0^{(j)}$$

and (Π_0, Π_1) are *d*-compatible with respect to Ω_0 .

• Example. Henon-Heiles

•

$$h_1 = \frac{1}{2}p_1^2 + \frac{1}{2}p_2^2 + q_1^3 + \frac{1}{2}q_1q_2^2,$$

$$h_2 = \frac{1}{2}q_2p_1p_2 - \frac{1}{2}q_1p_2^2 + \frac{1}{4}q_1^2q_2^2 + \frac{1}{16}q_2^2.$$

• On $\mathbb{R}^5 \ni (q_1, q_2, p_1, p_2, c)$

$$\Omega_0 Y_0 = 0$$

$$\Omega_0 Y_1 = dh_1 = \Omega_1 Y_0$$

$$\Omega_0 Y_2 = dh_2 = \Omega_1 Y_1$$

$$0 = \Omega_1 Y_2$$

where
$$Y_1 = \Pi_0 dh_1 - q_1 Y_0$$
, $Y_2 = \Pi_0 dh_2 - \frac{1}{4} q_2^2 Y_0$ and

$$\Omega_0 = \left[egin{array}{ccccc} 0 & 0 & -1 & 0 & 0 \ 0 & 0 & 0 & -1 & 0 \ 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \end{array}
ight],$$

$$\Omega_1 = \begin{bmatrix} 0 & -\frac{1}{2}p_2 & -q_1 & -\frac{1}{2}q_2 & 3q_1^2 + \frac{1}{2}q_2^2 \\ \frac{1}{2}p_2 & 0 & -\frac{1}{2}q_2 & 0 & q_1q_2 \\ q_1 & \frac{1}{2}q_2 & 0 & 0 & p_1 \\ \frac{1}{2}q_2 & 0 & 0 & 0 & p_2 \\ -3q_1^2 - \frac{1}{2}q_2^2 & -q_1q_2 & -p_1 & -p_2 & 0 \end{bmatrix}.$$